{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "\n", "df = pd.read_csv(\"4-2_skill_level.csv\",index_col=0)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "from sklearn.cluster import KMeans\n", "vec = KMeans(n_clusters = 3)\n", "group_num = vec.fit_predict(df)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | コミュニケーション | \n", "リーダーシップ | \n", "プログラミング | \n", "ネットワーク知識 | \n", "セキュリティ知識 | \n", "
---|---|---|---|---|---|
グループ名 | \n", "\n", " | \n", " | \n", " | \n", " | \n", " |
0 | \n", "7.500000 | \n", "6.750000 | \n", "9.250000 | \n", "9.000000 | \n", "8.750000 | \n", "
1 | \n", "4.000000 | \n", "3.250000 | \n", "5.500000 | \n", "5.375000 | \n", "5.375000 | \n", "
2 | \n", "8.666667 | \n", "9.333333 | \n", "5.333333 | \n", "6.333333 | \n", "7.333333 | \n", "